

EX PARTE OR LATE FILED

RECEIVED

OCT - 7 1992

FEDERAL COMMUNICATIONS COMMISSION
OFFICE OF THE SECRETARY

October 6, 1992

Ms. Donna Searcy Federal Communications Commission 1919 M Street, N.W. Room 222 Washington, D.C. 20554

RE: Dockets ET 92-100 GEN 90-3141/

Dear Ms. Searcy:

Representatives of Motorola met today with members of the Office of Engineering and Technology to discuss Narrowband PCS/Advanced Messaging. Two copies of written material presented are attached for the docket files.

Regards,

Stuart Overby

Manager of Regulatory Programs

No. of Cooles rec'd_ List A B C D E

ADVANCED MESSAGING SERVICES (AMS)

MM 10/3/92 HeV. C

RECEIVED

OCT - 7 1992 .

FEDERAL COMMUNICATIONS COMMISSION
OFFICE OF THE SECRETARY

AGENDA

- I. ENHANCED APPROACH TO AMS
- II. SPECTRUM CONSERVATION THROUGH ASYMMETRY
- III. SPECTRALLY EFFICIENT SYSTEM PROPOSAL
- IV. BENEFITS OF MULTI-CHANNEL LICENSES
- V. BENEFITS OF QUIET TALK-IN SPECTRUM
- VI. RECOMMENDED BANDPLAN

Advanced Messaging Service

• KEY SYSTEM ATTRIBUTES

- INBOUND SIGNALING
 - ACKS, REQUESTS, REGISTRATION, MESSAGES
- HIGH CAPACITY OUTBOUND MESSAGING
 - WIDE-AREA SIMULCAST FOR:
 - BROADCAST MESSAGES (1-N)
 - LOCALIZATION (ADDRESS ONLY)
 - FREQUENCY RE-USE FOR INDIVIDUAL MESSAGING
 - ACK OF ADDRESS GIVES LOCATION
 - MESSAGE SENT IN LOCAL CELL ONLY
- COVERAGE EQUIVALENT TO PAGING
- SMALL, LOW COST, LONG BATTERY LIFE SUBSCRIBER UNITS

MOBILE DATA INBOUND / OUTBOUND SYMMETRY

- MANY MOBILE DATA USES REQUIRE MORE OUTBOUND THAN INBOUND TRAFFIC CAPACITY
- IT IS POSSIBLE TO PURPOSELY BUILD AN ASYMMETRICAL DATA SYSTEM WHICH:
 - IS HIGHLY COST EFFECTIVE
 - MEETS THE TRAFFIC NEEDS OF MUCH OF THE MARKET
 - HAS SMALLER, LONGER BATTERY LIFE UNITS
 - IS SPECTRUM EFFICIENT

SUCH A SYSTEM REQUIRES LESS BANDWIDTH FOR INBOUND MESSAGES THAN FOR OUTBOUND MESSAGES

PAGING ASYMMETRICAL MESSAGES

- NATURAL DRIVERS TOWARD ASYMMETRY
 - INFOCAST BROADCAST SERVICES
 - REMOTE COMPUTER DATABASES
 - LIMITED ENTRY CAPABILITY OF SMALL DEVICES
- OTHER POSSIBLE DRIVERS TOWARD ASYMMETRY
 - FORMS OR CANNED MESSAGES AT PORTABLE DEVICE (RESIDENT OR RECEIVED VIA OUTBOUND RF)
 - MEMORY AT CENTRAL TERMINAL TO TRACK PORTABLE
 - WIRELINE ALTERNATIVE IN PORTABLE
 - PRICING AND TRANSFER TIME OF INBOUND RF

PAGING MOBILE DATA APPLICATIONS* --- SYMMETRY

APPLICATION

- · MAIL
 - ORIGINATION
 - RECEPTION
 - FORWARDING
 - ANNOTATION W/ FORWARDING
- DATA INQUIRY/RESPONSE
- INFOCAST
- LINK SESSIONS
 - PORTABLE COMPUTER
 - PEER-PEER
- FINDER (Call me at.., Who has a ...)
- ROUTE (Where is ...)
- MALL
 - SHOPPING (Tell me about your...)
 - PURCHASE (Buy (number) @ \$_)
- AGENT (Do this for me..Dispatch)
- SUBMIT (Take this...)

SYMMETRY

- OUTBOUND WEIGHTED OVERALL
 - DEVICE LIMITED INBOUND
 - LONG OUTBOUND DOCUMENTS
 - INBOUND = ID+ADDRESSES ONLY
 - INBOUND = ANNOT+ID+ADDR ONLY
- MOSTLY LONG OUTBOUND
- LONG OUTBOUND ONLY
- OUTBOUND WEIGHTED OVERALL
 - MOSTLY LONG OUTBOUND
 - MOSTLY SHORT SYMMETRICAL
- OUTBOUND WEIGHTED
- SYMMETRICAL?
- OUTBOUND WEIGHTED OVERALL
 - MOSTLY OUTBOUND
 - SHORT INBOUND
- MOSTLY OUTBOUND
- MOSTLY INBOUND

*From McLaughlin & Associates Inc - Mobile Communications Marketplace Pre-Convention Seminar 9/29/92

SUBSCRIBER PAGING / STRATEGY CENTER

PAGING TRAFFIC BALANCE ON "TAM" CHANNELS (W/O INFOCAST)

			TRAFFIC CON (CHARACTE	
MIX TYPE	TRAFFIC	LENGTH	OUTBOUND	INBOUND
50%• NUMERIC PAGERS (NO ACK)	2.5/DAY	10 CHAR	12.50	0.00
25%• ALPHANUMERIC PAGERS (AUTO ACK ONLY)	3.0/DAY	80 CHAR	60.00	2.25
25% • E-MAIL / COMPUTER UNITS (AUTO AND USER ACK + INITIATION)				
• E-MAIL PAGE RECEPTION	5.0/DAY	500 CHAR	625.00	15.00
• 20% REPLIES	1.0/DAY	100 CHAR	0.75	25.00
• FILE DOWNLOADS	1.0/DAY	10K CHAR	2500.00	30.75
• FILE TRANSFER REQUESTS	1.0/DAY	50 CHAR	0.75	12.50
ALPHA PAGE INITIATION	1.0/DAY	80 CHAR	20.00	0.75
* SUBMISSIONS & E-MAIL ORIGINATION ASSUMED TO	BE BY WRELI	NE		
** ACKS ASSUMED TO BE 3 CHARACTERS LONG		TOTAL	3219.00	76.25
		INBOUN	D = 2.4% OUTBC	UND

Prepared by Paging Division
Bob Schwendeman 10/1/92

AMS = ENHANCED ONE-WAY MESSAGING

• KEY SYSTEM ATTRIBUTES

- INBOUND SIGNALING
 - ACKS, REQUESTS, REGISTRATION, SHORT MESSAGES
- HIGH CAPACITY OUTBOUND MESSAGING
 - WIDE-AREA SIMULCAST FOR:
 - BROADCAST MESSAGES (1-N)
 - LOCALIZATION (ADDRESS ONLY)
 - FREQUENCY RE-USE FOR INDIVIDUAL MESSAGING
 - ACK OF ADDRESS GIVES LOCATION
 - MESSAGE SENT IN LOCAL CELL ONLY
- COVERAGE EQUIVALENT TO PAGING
- SMALL, LOW COST, LONG BATTERY LIFE SUBSCRIBER UNITS

OUTBOUND MESSAGE - STEP 1 BROADCAST / LOCATION VIA SIMULCAST

MESSAGE SENT FROM CENTRAL CONTROLLER TO ALL SITES FOR SIMULTANEOUS TRANSMISSION AS IN TODAY'S PAGING SYSTEMS

- USED FOR 1 TO N (BROADCAST) MESSAGES
- BROADCAST OF ADDRESS IS FIRST STEP IN DELIVERY OF MESSAGE TO SUBSCRIBER WHOSE LOCATION IS UNKNOWN

MM 10/3/92 Rev. 0

OUTBOUND MESSAGE TO INDIVIDUAL - STEP 2 ACK OF ADDRESS

• UPON RECEIPT OF ADDRESS, UNIT RESPONDS IN UNIQUE (TIME/FREQ/CODE) CHANNEL

• MULTIPLE RECEIVE SITES LOG DATA AND SIGNAL STRENGTH

• CENTRAL CONTROLLER COLLECTS ACKS / SIGNAL STRENGTH,

DETERMINES BEST XMITTER(S)
FOR DELIVERY OF MESSAGE,
AND SCHEDULES
MESSAGE
TRANSMISSION

TO ACHIEVE MAXIMUM RE-USE

- MICRO AND MACRO DIVERSITY TO IMPROVE INBOUND RANGE
- NO RE-USE DURING ADDRESS ACK

MM 10/3/92 Rev. 0

OUTBOUND MESSAGE TO INDIVIDUAL - STEP 3 NON-SIMULCAST DELIVERY WITH RE-USE

MESSAGES SENT FROM CENTRAL CONTROLLER TO INDIVIDUAL SITES FOR SIMULTANEOUS DELIVERY OF MULTIPLE **MESSAGES TO INDIVIDUAL UNITS**

- TRANSMISSIONS RE-USE SAME CHANNEL IN CELLS SUFFICIENTLY SEPARATED
- ADDITIONAL CHANNELS WOULD INCREASE CAPACITY WITH SAME INFRASTRUCTURE

OUTBOUND MESSAGE TO INDIVIDUAL - SUMMARY

STEP ACTION

- 1 SIMULCAST ADDRESS
- 2 UNIT ACKS ADDRESS (NO RE-USE)
- 3 MESSAGE TRANSMITTED IN LOCAL AREA (WITH RE-USE)
- 4 UNIT ACKS MESSAGE DATA (WITH RE-USE)
- 5 3 AND 4 REPEATED IF NECESSARY DUE TO ERRORS

OPTIONAL

6 USER INITIATEDACK OR RESPONSE

MM 10/3/92 Rev. 0

INBOUND INITIATION - STEP 1 REGISTRATION, REQUEST, ASYNC RESPONSE, ETC.

- UNIT TRANSMITS SHORT REQUEST FOR SERVICE
- MULTIPLE RECEIVE SITES LOG DATA AND SIGNAL STRENGTH
- CENTRAL CONTROLLER COLLECTS DATA / SIGNAL STRENGTH, DETERMINES BEST XMITTER(S) FOR DELIVERY OF GRANT,

AND SCHEDULES GRANT TRANSMISSION TO ACHIEVE

MAXIMUM RE-USE

- MICRO AND MACRO DIVERSITY TO IMPROVE INBOUND RANGE
- RE-USE AND/OR COLLISION MAY OCCUR COLLISION RESOLVED BY RE-TRY

INBOUND INITIATION - STEP 2 CHANNEL GRANT / ASSIGN

GRANTS SENT FROM CENTRAL CONTROLLER TO INDIVIDUAL SITES FOR SIMULTANEOUS DELIVERY OF MULTIPLE

- SAME AS STEP 3 FOR OUTBOUND MESSAGE
- TRANSMISSIONS RE-USE SAME CHANNEL IN CELLS SUFFICIENTLY SEPARATED
- ADDITIONAL CHANNELS WOULD INCREASE CAPACITY WITH SAME INFRASTRUCTURE

INBOUND INITIATION - STEP 3 INBOUND DATA TRANSMISSION

• INBOUND DATA RECEIVED AT MULTIPLE SITES

• SITES RELAY DATA AND SIGNAL STRENGTH TO CENTRAL CONTROLLER FOR IMPLEMENTATION

OF MACRO DIVERSITY

• RE-USE ACHIEVED SINCE MULTIPLE
UNITS TRANSMIT SIMULTANEOUSLY
IN AREAS WHERE TRAFFIC
IS PENDING AND UNITS ARE

SUFFICIENTLY SEPARATED

• ADDITIONAL CHANNELS WOULD INCREASE CAPACITY WITH SAME INFRASTRUCTURE

INBOUND INITIATION - SUMMARY

STEP ACTION

- 1 INBOUND CHANNEL REQUEST (RE-USE)
- 2 OUTBOUND GRANT / ASSIGN (RE-USE)
- 3 INBOUND MESSAGE TRANSMISSION
- 4 OUTBOUND CONFIRMATION (RE-USE LIKE 2)
- **3 AND 4 REPEATED IF NECESSARY DUE TO ERRORS**

SUBSCRIBER PAGING / STRATEGY CENTER **PAGING WITH ACK** RF SYSTEM COST PER MILLION BITS VS SYSTEM SIZE **RELATIVE COST PER MILLION BITS DELIVERED** 100 **6.4 KBPS SIMULCAST PAGING SYSTEM** 10 **BIG CITY** = 46 XMTRS 1 1 FREQ 6.4/16 KBPS PAGING WITH IDEAL ACK REUSE 0.10 BIG CITY = 73 XMTRS 7 FREQ 6.4/16 KBPS PAGING WITH IDEAL ACK REUSE 0.01 10.013 1000 10 100 SYSTEM SIZE IN NUMBER OF BASE TRANSMITTERS REQUIRED

Prepared by Paging Division Bob Schwendeman 10/1/92

Band Plan Objectives

To provide asymmetrical and symmetrical pairs to conserve spectrum.

To take advantage of the quiet 901-902 MHz "talk in" band for low cost system design.

To provide additional nationwide operators.

Pairing plan for all talk out channels.

To provide "talk in " channels to allow existing operators to upgrade.

To recognize that paging has progressed to regional operation. (no local allocations)

901-902 MHZ FOR INBOUND

- INBOUND CHANNELS NEED QUIET SPECTRUM
 - TWO-WAY USES PAIRED SPECTRUM FOR GOOD REASON
 - COST IMPACT IS EVEN WORSE WITH HIGH POWER PAGING

FREQ. BAND	901-902	930-931	COST	
# RCV SITES	40	400	360	
RECURRING MON	THLY COSTS			
SITE RENTAL	\$8,000	\$80,000	\$72,000	
LINE COSTS	\$6,000	\$60,000	\$54,000	
TOTAL	\$14,000	\$140,000	\$126,000	
*BASED UPON 20	DB DEGRADAT	ON IN ACK RE	CEIVER	

STRAWMAN BAND PLAN M-50/150 kHz Channels.

TALK OUT Netionwide Symmetrical 940-941 MHz. 3, 150 kHz Channels 11, 50 kHz Channel TALK OUT 930-931 MHz. 20, 50 kHz. Channels ACKNOWLEDGE/TALK IN 901-902 MHz. 44, 12.5 kHz. Channels 31 paired with talk out, 13 available for existing systems. 3, 150 kHz Channels

12.5 kHz Channels All licensees at 930-931 automatically receive one of these channels. MTEL due to their ploneer preference status, may have a problem here.

INBOUND CHANNEL ISSUES

- LOW BIT RATE, NARROW CHANNELS MAXIMIZE RANGE
- MAXIMUM PACKING DENSITY IMPACTS SUBSCRIBER UNIT SIZE, COST, AND POWER CONSUMPTION
- REQUIRES PRECISE POWER CONTROL
- REQUIRES FREQUENCY STABILITY
- 12.5 KHZ PROVIDES A
 GOOD COMPROMISE
 OF CAPACITY AND
 FLEXIBILITY vs
 IMPLEMENTATION
 COMPLEXITY

MM 10/3/92 Rev. 0

ASYMMETRIC SYSTEM IS AN ENABLER

ASYMMETRIC SYSTEM

50 KHZ OUTBOUND

64 KBPS @1000W 128 KBPS @1000W

12.5 KHZ INBOUND 800 BPS @ 1W SIMULCAST NON-SIMULCAST SYMMETRIC SYSTEM 50 KHZ OUTBOUND

> 128 KBPS @100W 50 KHZ INBOUND

> > 128 KBPS @1W

36 XMIT / 85 RCV

SITES FOR COVERAGE:

100 XMIT / 563 RCV

• LOW COST FOR INITIAL COVERAGE - SYSTEM GROWS TO MEET DEMAND

CONCLUSIONS

- FOR MUCH OF ADVANCED MESSAGING, TALK-IN TRAFFIC << TALK-OUT TRAFFIC
- TALK-IN CAPABILITY ENABLES RE-USE ON OUTBOUND CHANNELS
- QUIET TALK-IN CHANNELS MINIMIZE INFRASTRUCTURE COST
- AN ASYMMETRICAL PORTION OF BANDPLAN:
 - MATCHES INBOUND SPECTRUM TO CAPACITY REQUIRED, LEAVING MORE SPECTRUM FOR OUTBOUND CHANNELS
 - ENABLES PAIRING (RE-USE) ON MORE OUTBOUND CHANNELS
- A SYMMETRICAL PORTION OF THE BANDPLAN WITH WIDE BANDWIDTH ALLOWS HIGH SPEED SIGNALLING
- MULTI-CHANNEL LICENSES IMPROVE SYSTEM CAPACITY WITH MINIMAL INCREASE IN INFRASTRUCTURE, FOR LOWER COST